Mechanism of negative cooperativity in glyceraldehyde-3-phosphate dehydrogenase deduced from ligand competition experiments.
نویسندگان
چکیده
It is shown that the modulation in the negative cooperativity of ligand binding by another, competing ligand that binds noncooperatively is accounted for exclusively by the ligand-induced sequential model. It is therefore suggested that whenever such a phenomenon is observed it argues strongly in favor of the sequential model. The advantages and limitations of this approach are evaluated. The binding of the coenzymes NAD+ and nicotinamide-1-N6-ethenoadenine dinucleotide to rabbit muscle apo-glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating; EC 1.2.1.12] exhibits strong negative cooperativity, whereas acetylpyridine adenine dinucleotide, ATP, and ADP-ribose bind noncooperatively to the NAD+ sites. The strong abolished in the presence of acetylpyridine adenine dinucleotide and strongly weakened by ATP, ADP, and AMP, but was not affected by addition of ADP-ribose. These findings demonstrate that the negative cooperativity in coenzyme binding to this enzyme results from sequential conformational changes and exclude the pre-existent asymmetry model as a possible explanation. These results also support the view that the structure of the pyridine moiety of the coenzyme analogs plays a role in orienting the adenine moiety at the adenine subsite, therefore affecting the cooperativity in the binding of the coenzyme analog which is mediated through the adenine subsites.
منابع مشابه
Rate-determining processes and the number of simultaneously active sties of D-glyceraldehyde 3-phosphate dehydrogenase.
Transient kinetic studies of the reversible oxidative phosphorylation of d-glyceraldehyde 3-phosphate catalysed by d-glyceraldehyde 3-phosphate dehydrogenase show that all four sites of the tetrameric lobster enzyme are simultaneously active, apparently with equal reactivity. The rate-determining step of the oxidative phosphorylation is NADH release at high pH and phosphorolysis of the acyl-enz...
متن کاملNAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Thermoproteus tenax. The first identified archaeal member of the aldehyde dehydrogenase superfamily is a glycolytic enzyme with unusual regulatory properties.
The hyperthermophilic archaeum Thermoproteus tenax possesses two glyceraldehyde-3-phosphate dehydrogenases differing in cosubstrate specificity and phosphate dependence of the catalyzed reaction. NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase catalyzes the phosphate-independent irreversible oxidation of D-glyceraldehyde 3-phosphate to 3-phosphoglycerate. The coding gene was cloned, seq...
متن کاملThe glyceraldehyde 3-phosphate dehydrogenases of liver and muscle. Cooperative interactions and conditions for functional reversibility.
A method is described for the isolation of glyceraldehyde 3.phosphate dehydrogenase from rabbit liver. The enzyme has been crystallized as the NAD complex and its chemical and physical properties have been compared with those of the muscle enzyme. The kinetics of the reversible reaction catalyzed by the dehydrogenases is sensitive to temperature and ionic strength and has been examined at 37, p...
متن کاملHuman hepatic glyceraldehyde-3-phosphate dehydrogenase binds to the poly(U) tract of the 3' non-coding region of hepatitis C virus genomic RNA.
The unique poly(U/UC) tract, the middle part of the tripartite 3' non-coding region (3'NCR) of hepatitis C virus (HCV) genomic RNA, may represent a recognition signal for the HCV replicase complex. In this study, several proteins binding specifically to immobilized ribooligonucleotide r(U)(25) mimicking this structure were identified using cytosolic extracts from HCV-negative or -positive liver...
متن کاملNicotinamide adenine dinucleotide-specific glyceraldehyde 3-phosphate dehydrogenase from Pisum sativum. Effect of nicotinamide adenine dinucleotide and related compounds on the enzyme-catalyzed arsenolysis of 1,3-diphosphoglyceric acid.
NADf-specific glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from pea seeds is shown to catalyze the arsenolysis of 1 ,3-diphosphoglyceric acid. The reaction shows an absolute requirement for NAD+ or analogs which will replace NAD+ in the enzyme-catalyzed oxidative phosphorylation of glyceraldehyde 3-phosphate. NADH, glyceraldehyde j-phosphate, or NADf analogs which are inhibitory or in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 77 9 شماره
صفحات -
تاریخ انتشار 1980